sábado, 24 de julio de 2010
The Nanoelectronic Device Metrology Project will develop the required measurement infrastructure and scientific knowledge-base to address technology barriers and enable the successful development and subsequent manufacture of next-generation information processing nanoelectronic technologies.
Nanoscale electronic devices, with components on the billionth-of-a-meter scale, represent one of the most active fields of electronics research. The Nanoelectronic Device Metrology project aims to develop new measuring techniques and standards that are crucial in the effort to develop these technologies to the point where commercial applications become feasible. The work involves determining critical measurement-taking needs, such as a reliable way to measure the electrical properties of small ensembles of molecules. Ultimately, this project will yield a toolbox of measurement methods that will allow engineers to relate the performance of nanoelectronic devices to the structures and properties of the materials of which they are made.
Description:
Throughout its history, the semiconductor industry has constantly aimed to build information-processing devices that deliver higher performance and greater information storage density, while costing less and using less power. Continuation of this trend requires new breakthroughs, and the industry is looking to move beyond the current standard of integrated circuits built using complementary metal-oxide-semiconductor (CMOS) technology.
Current CMOS-based circuits are already considered by some researchers as a type of nanoelectronics, with dimensions of a few dozen nanometers and research ongoing to shrink them further. But right now, the main challenge in moving CMOS forward is making the circuits faster, which involves determining how to regulate their power consumption.
Researchers aiming to develop the field of nanoelectronics are therefore investigating how to exploit the properties of materials at the nanoscale in order to achieve this goal.
NIST scientists are deeply involved in a wide range of nanoelectronics research. The goal of the Nanoelectronics Device Metrology (NEDM) project is a fundamental one. Project scientists are developing a total metrology package -- a set of new tools, tests, and methods for the coming age of nanoelectronics -- that will help nanotechnologies enter the marketplace more quickly. Such a large task is well suited to NIST's uniquely broad expertise and experimental capabilities.
The NEDM Project has four major goals: to develop tests and methods to accurately measure the electrical properties of small groups of molecules, ensembles that are the basis of an emerging class of minuscule circuits known as molecular electronics; to develop the metrology for research into silicon-based nanoelectronics; to develop advanced measurement techniques for the very small capacitances typical of nanoelectronic devices; and to devise measurement techniques to help with the development of organic spintronics and other alternative technologies.
Major Accomplishments:
•Created molecule assemblies on a silicon surface, a step toward CMOS-compatible molecular electronics
•Demonstrated innovative approach to fabricate high-performance silicon nanowire field-effect transistors
•Used inelastic electron tunneling spectroscopy to study a novel device called a "molecular spin-valve" that combines molecular electronics and spintronics
•Created powerful test-structures for self-assembled semiconductor nanowires
•Developed innovative, multi-purpose technique to study devices with metal/monolayer/silicon structures
•Demonstrated enhanced electrostatic control of two-dimensional nanostructures
Silicon technology has had a dramatic impact on the world economy over the past few years and is the driving force behind the explosion in electronic applications. There is currently no rival to silicon electronics technology and it is predicted to remain the dominant technology for the foreseeable future.
The technology has been driven by an ability to continually reduce the size of transistors within CMOS circuitary, whilst simultaneously increasing their switching speed and reducing the power consumption per element. Coupled with improvements in manufacturing technology that allow the silicon industry to reliably produce chips on dinner plate sized wafers (with 450 mm diameter wafers coming soon), this has led to exponential increases in memory density and processor speed together with an exponential decrease in cost per function. However, simple CMOS scaling can not go on for ever, so future technology generations are looking to new materials, such as silicon germanium alloys, and new architectures, such as silicon-on-insulator.
Silicon technology is also progressively moving into new applications as novel silicon-based technologies are developed, such as microsystems, silicon-based photonics, spintronics, bioMEMS and even refrigerators.
As dimensions shrink to the nanometre range, and the range of applications broadens, silicon-based technology requires increasing input from the academic community and the Warwick Nano-Silicon Group is committed to playing a central role, both in the UK and on the world stage. Most of our work is in collaborative projects with partners from UK and other European universities, advanced research institutes such as IMEC and LETI, and from industry.
Our specific expertise is in:
-Epitaxial growth of Si, SiGe alloys and Ge layers by MBE and CVD, including n- and p-type doping for both active regions and strain-tuning buffer layers
-Structural characterisation of layers, including XRD, TEM, SIMS and ellipsometry
La revolución nano
Emilio Méndez, director del Centro para Nanomateriales Funcionales de EE UU, no está muy convencido de que la nanotecnología, como predicen algunos, «vaya a ser la próxima ola», la parte de la ciencia que vaya a tener un mayor impacto en la sociedad. En este sentido, tampoco está seguro de que esta disciplina «vaya a ser la próxima revolución, que en todo caso será una revolución blanda y no dura».
En todo caso, se cumplan o no las expectativas sobre la nanotecnología, el premio Príncipe de Asturias de Investigación Científica y Técnica en 1998 repasó las que, en su opinión, van a ser las tendencias de la natotecnología. En primer lugar se refirió a los sensores y también ve un reto de futuro la explotación del silicio en la nanoelectrónica, disciplina en la que cree que «el Santo Grial es encontrar un interruptor nanomolecular».
Otra tendencia de la nanotecnología, a su juicio, serán los nanomateriales inspirados en aspectos biológicos en la que la tarea a realizar será estudiar cómo utilizar las propiedades del ADN «para intentar entender qué es lo que ocurre a nivel molecular».
según se plantee su evolución a corto o largo plazo. Méndez cree que a corto plazo será posible ver cómo se hace un control de nanopartículas en la industria aeronáutica y en la del automóvil. Igualmente, asegura el científico español, se verá una expansión de la industria cosmética. Una actividad en la que, asegura, empresas como L’Oreal «tiene dos veces más patentes que IBM y supera las 400 patentes en nanotecnología». Igualmente prevé un desarrollo a corto plazo de la nanotecnología en la medicina y el medio ambiente.
A medio plazo, Méndez señala que la nanotecnología tendrá una aplicación en la energía de batería «y se pondrán en marcha en breve los sensores complejos que integran nanopartículas». A largo plazo, cree que se producirán las oportunidades que revolucionarán la nanoelectrónica y la electrónica molecular».
Para el profesor Méndez, en cambio, los desafíos en el desarrollo de la nanotecnología serán conseguir que todas las nanopartículas sean iguales. No todo será tan fácil, dice, como haber consegui fabricar en grandes cantidades «el chip que llevamos en el iPod». El reto, en su opinión, es «cómo hacer material reproducible y cómo hacerlo en grandes cantidades». Otro desafío que le espera a la nanotecnología tiene un factor económico. Según este experto, tras las investigaciones realizadas en la nanociencia es la hora «de aprovecharnos más del conocimiento para hacer aplicaciones, para llevar las cosas a la práctica». En este sentido, cree que «el futuro pertenece más a los ingenieros que a los científicos».
Igualmente los posible efectos que se desprenden de los productos de la nanotecnología para la seguridad y la salud de las personas es otro desafío que hay que abordar. Según Méndez, hay que conocer bien las propiedades de los materiales. Pone como ejemplo el caso del oro, un material inerte muy adecuado para implantes pero que «cuando lo llevamos a la nanoescala es un material activo, de modo que no podemos extrapolar y cuando trabajamos con nanomateriales la industria debe poner en marcha herramientas para garantizar la seguridad y controlar las propiedades de estos materiales».
En su conferencia en NANOfutures 2010, Emilio Méndez hizo énfasis en diferenciar entre nanociencia, que definió como «el descubrimiento de los fenómenos innovadores en una escala nano», de nanotecnología, que es «la utilización práctica de esos descubrimientos en la empresa».
Una ciencia diferente
Para este experto, hay tres razones que explican «por qué la nanotecnología es diferente. En primer lugar, asegura, «porque las propiedades de los materiales son diferentes, y así, por ejemplo, podemos controlar el color». En segundo lugar, «porque cuando reducimos a escala, la superficie juega un papel clave». Y aquí puso como ejemplo la química vinculada con la catálisis porque «si aumentamos la superficie se aumenta la reactividad de algunos compuestos». Y, en tercer lugar, el valor diferenciador de la nanotecnología es que, en medicina, «permite meter partículas a través de organismos».
El profesor Méndez, por otra parte, cree que hay tres razones para que explican por qué se ha producido ahora y no hace 40 años la llamada «explosión nano», cuando la nanotecnología se descubrió en 1925. A su juicio, la microelectrónica, las nuevas herramientas para visualizar y controlar los átomos explican el auge actual de esta disciplina de la ciencia. Así como las nuevas formas de utilizar la materia. Es el caso, señala, de los nanotubos de carbono «y se ha descubierto también cómo se diseñan los cables cuánticos».
La nanotecnología, según Emilio Méndez, ya tiene una presencia en la vida diaria de las personas. Así, señala, está presente en el sector textil con prendas que llevan nanopartículas de plata. Igualmente, la nanomedicina permite, «gracias a los nanosensores ampliar el diagnóstico y curar al administrar fármacos en lugares recónditos del organismo». Llegado a este punto, Méndez elogió el «mucho trabajo que hay en Asturias en la medicina regenerativa al introducir la nanotecnología en algunos implantes».
La energía es otro sector en el que son visibles las aplicaciones de la nanotecnología. Así, Méndez habló del paso de una bombilla normal a una luz blanca basada en puntos cuánticos, que servirá para reducir el consumo de energía. Igualmente, explicó que ya es posible sustituir el cable por superconductores y «es posible alargar la fibras de nanotubos de carbono para sustituir a las líneas de transmisión eléctrica».
Respecto a la producción de energía aludió a los proyectos de energía fotovoltaica para transformr la luz solar en electricidad. En este ámbito se refirió a los estudios que se están realizando para utilizar la energía del sol para romper el agua en hidrógeno y oxígeno «para lo que necesitamos crear nuevos calatalizadores cin nuevos materiales puedan acelerar la descomposicíon del agua con la luz del sol»
La Comisión Europea realizó la presentación esta semana en Gijón de NANOfutures, la Plataforma de Nanotecnología con la que el ejecutivo comunitario persigue aplicar los conocimientos de esta disciplina científica a la industria europea y propiciar así su desarrollo. Así lo manifestó el responsable de Nanociencia y Nanotecnología de la Comisión. Christos Tokamanis aseguró que «en cinco años hemos puesto las bases de NANOfutures pero a partir de ahora el objetivo no es desarrollar más tecnología, sino desarrollar la industria».
Este mensaje de la Comisión Europea a favor de fortalecer la industria a partir de los avances de la nanotecnología fue compartido también por el secretario de Innovación, Juan Tomás Hernani, y por el viceconsejero Herminio Sastre. Todos ellos se dirigieron en estos términos a los más de 450 investigadores y representantes de empresas que participaron en NANOfutures 2010, un acto para difundir la nanotecnología en Asturias organizado por la Fundación Prodintec.
Tokamanis explicó que la plataforma NANOfutures ha hecho un diagnóstico sobre «lo que necesitamos en nanotecnología» para llevarlo a las industrias y, por consiguiente, al mercado y así poder activar el crecimiento económico en Europa.
En la estrategia elaborada por la Plataforma de Nanotecnología, según el alto cargo comunitario, se ha tratado de «crear puentes» entre las industrias y los gobiernos de la UE y, a la vez, se han definido «las áreas en las que NANOfutures tiene que dar respuestas».
El plan de acción diseñado por esta plataforma parte de la base de que la nanotecnología ayudará a mejorar la competitividad. NANOfutures se plantea como objetivo «crear un proceso de creación de valor en productos estratégico llevando las aplicaciones de la nanotecnología al mercado a través de la industria».
El plan trazado persigue lograr sus objetivo entre 2010 y 2015. Razón por la que Tokamanis advierte de que «el crecimiento empresarial no va a aparecer rápidamente porque tenemos que competir con muchas tecnologías, pero NANOfutures va a proporcionar el ímpetu empresarial para que las empresas europeas, grandes y pequeñas, estén dispuestas a seguir este camino».
Para conseguir llevar al mercado los avances de la nanotecnología, el alto cargo comunitario cree que es necesario «mejorar el control y la formación de equipos en las empresas, porque tenemos islas de excelencia, pero falta desarrollar una infraestructura para crear una red de empresas que puedan desarrollar sus productos».
Además de las barreras que suponen no tener una industria que, en general, no está preparada para absorber y aplicar los avances conseguidos en el campo de la nanotecnología, Tokamanis llamó a superar «la falta de consenso entre investigación e innovación». En este sentido, pidió hacer un esfuerzo para que «el investigador traduzca sus resultados en productos». Es decir, que hay que corregir lo que ahora sucede, «que las tecnologías se desarrollan en un laboratorio y muchas veces no llegan a ningún sitio y, para que sea importante para el negocio, hay que hacer visible lo invisible y procurar que cada innovación se traduzca en algo tangible, como ocurre en EEUU y Japón, mientras que en Europa sólo ocurre en casos aislados». NANOfutures, aseguró, trata de superar «la fragmentación que hay entre I+D e innovación».
Otras de las deficiencias que ha detectado la Comisión Europea a través de la Plataforma de Nanotecnología, según Tokamanis, es que «los mercados de nanotecnología tampoco están definidos».
Entre las propuestas de la Comisión figuran las de desarrollar entornos de innovación abierta en los que participen los centros de investigación. Por otra parte, «necesitamos buenos científicos, pero no generalistas sino que tengan un conocimiento profundo en cada disciplina para que después puedan trabajar en profundidad en grupos multidisciplinares».
Para cuadrar el círculo de la reactivación de la industria europea a través de la aplicación de los avances en nanotecnología, el alto cargo de la Comisión cree que es necesario también simplificar los mecanismos de financiación, para lo que propone que «sólo una parte del dinero lo aporte la CE y el resto salga de la industria y de los estados mienbros de la UE».
Por último, Tokamanis, reconoció que pese al esfuerzo inversor que Europa está haciendo en I+D, se generan menos patentes que en EEUU y Japón y que salvo en el ámbito de la nanoelectrónica y en sectores como el aeronáutico y el del automóvil «vamos retrasados». La cuestión estriba en que «desarrollamos muchas tecnologías pero cuando llega el momento no conseguimos que el producto llegue al mercado».
Por su parte, el director de Tecnologías Industriales de la Dirección General de Investigación de la CE, Herbert Von Bose, además de llamar a ser más eficaces en la investigación ante el recorte de fondos en la UE, destacó la importancia de «aunar socios industriales» para que colaboren en el logro de los objetivos marcados por NANOfutures». En este sentido, abogó por crear alianzas de industrias, entidades académicas, regiones y países europeos para ver dónde pueden cooperar y que todos avancemos en la misma dirección».
La inversión pública
En la misma línea, el número dos del Ministerio de Ciencia e Innovación, defendió la creación de alianzas intersectoriales como vía para superar la crisis. Juan Tomás Hernani cree que NANOfutures es un buen ejemplo a seguir de lo que debe ser la colaboración público-privada. En este ámbito, pidió que no se fíe la salida de la crisis sólo a la inversión pública sino que «necesitamos que los investigadores y el sector industrial se muevan y tengan otro posicionamiento». En este objetivo, Hernani cree que NANOfutures tiene que jugar un papel clave y que se deben «invertir más recursos pero de una forma más profesional en el futuro, de modo que los resultados lleguen a la industria».
Finalmente, el viceconsejero de Ciencia y Tecnología, Herminio Sastre, se mostró de acuerdo en que Europa impulse la nanotecnología a través de plataformas para que, «a partir del trabajo en los laboratorios, las empresa puedan introducir productos innovadores y de calidad en los mercados».
Un camino, dijo, que también se está siguiendo en Asturias y cuyo rumbo se plasmará en el Plan de Ciencia Tecnologia e Innovación que está elaborando su viceconsejería. Y, añadió, una orientación que es visible en la apuesta del Gobierno regional en la creación de centros tecnológicos «en cuya actividad se demuestra que por cada euro de inversión generan tres euros, lo que demuestra que la inversión pública es rentable, estimula la actividad y nuestro tejido empresarial».
El grafeno, según los científicos, será vital en los próximos años para el desarrollo de la nanoelectrónica porque tiene mejores propiedades que el silicio para desarrollar dispositivos para ordenadores en los que se puede almacenar más información. Por grafeno se entiende «cada lámina atómica que uno puede extraer del grafito, un material carbonoso cuyo modelo está formado por láminas de átomos de carbono apiladas unas sobre otras». Esta es la explicación de Juan Ignacio Paredes, un científico del Instituto Nacional del Carbón (Incar) que dirige dos proyectos de investigación para averiguar las posibilidades futuras de aplicación del grafeno.Desde que hace cinco años un equipo de la Universidad de Manchester (Inglaterra) consiguió separar y obtener láminas individuales de grafito, denominadas grafeno, numerosos grupos de investigación se han lanzado a averiguar las propiedades de este material. De momento, está demostrado que el grafeno «tiene las propiedades del grafito, como una buena conductividad térmica y eléctrica y que es muy resistente químicamente, pero unas propiedades mejoradas e incluso tiene otras como permitir el transporte de los electrones casi sin resistencia y otras características de la física fundamental que surgen debido a su naturaleza bidimensional».
El grafeno, un sólido bidimensional, según este investigador del Incar, una vez que se logró separar del grafito se pensó en utilizarlo para aplicaciones en transistores. Según Paredes, la electrónica se basa en silicio y «cada vez es más difícil optimizar las propiedades de este material porque en nanoelectrónica se buscan estructuras más pequeñas y efectivas, con altas densidades que permitan tener muchos procesos en poco espacio, de ahí que se haya pensado en sustituir el silicio en electrónica y una posibilidad puede ser el grafeno. Con la nanoelectrónica, en los dispositivos electrónicos cada vez hay más chip por centímetro cuadrado porque son más pequeños, con dimensiones nanométricas que tienen más densidad y, por tanto, más capacidad de almacenamiento, cuanto más pequeños son».
Gran parte de los estudios, pues, buscan sustituir el silicio por el grafeno. De momento, según este investigador del Incar, no se comercializan dispositivos electrónicos basados en grafeno «y puede que no se consigan antes de 10 ó 20 años, si es que al final se consigue implementarlo». Para conseguirlo, Paredes señala que antes hay que resolver conseguir separar los grafenos en grandes cantidades que permitan una producción industrial porque, en su opinión, «no basta con hacer los dispositivos electrónicos en los experimentos, sino que necesitamos producirlos en grandes cantidades para usarlos en dispositivos electrónicos como los transistores de factor de campo eléctrico».
La preparación
Hasta la fecha no se ha encontrado la manera de conseguir una producción en grandes cantidades. Continúan los estudios pero «no es fácil producirlo en escala industrial, entre otras cosas porque a veces los grafenos no tienen las características deseadas porque en los procesos de preparación se pueden introducir defectos en el material que degrada sus características».
Entre los estudios sobre el grafeno se encuentran dos que se realizan en el Incar y en los que Juan Ignacio Pareces es el investigador principal. Uno de estos proyectos lleva por título «Filmes nanoestructurados de grafeno, puros e híbridos» y está financiado por el Principado. Uno de los objetivos de este estudio es utilizar grafenos y prepararlos como absorventes de cara a un hipotético uso para el almacenamiento de hidrógeno en un coche eléctrico alimentado por una pila de combustible.
El segundo proyecto, en este caso financiado por el Ministerio de Ciencia e Innovación, se denomina «Preparación y caracterización de nuevos materiales de carbono basados en grafenos individuales». Con este estudio se busca, a juicio de Paredes, «buscar soluciones al problema que plantea separar los grafenos de grandes cantidades para ver qué les ocurre cuando intentas prepararlos. Se trata de desarrollar técnicas y metodología que nos permita utilizarlos en grandes cantidades».
Las posibles aplicaciones de los grafenos, además de la nanoelectrónica, pasan por su utilización como componentes en células fotovoltaicas (la generación de electricidad a partir de la luz del sol) lo que es posible, según Juan Ignacio Paredes, porque «los grafenos en forma de filme son delgados, transparentes y buenos conductores».
Asimismo, las propiedades mecánicas de los grafenos hacen que se esté buscando su aplicación en los materiales compuestos. Así pues, se está estudiando su uso como refuerzo de polímeros cuyas propiedades mecánicas son bajas o malas. En el caso concreto de pizeas de aviones que están formadas por materiales compuestos rodeados por fibras de carbono «se está pensando en sustituir las fibras por grafenos porque son mejores».
Los sensores moleculares o de gases, según Paredes, son otra posible aplicación de los grafenos «porque tiene una superficie que permite una interacción de forma sensible a su ambiente «porque todos sus átomos que están en la superficie son muy sensibles a su ambiente y todos van a interaccionar con lo que está a su alrededor».
Así pues, con estas posibilidades futuras del grafeno, no es extraño que los proyectos de investigación del grafeno hayan crecido «de forma exponencial» en el último lustro.
El grafeno, que no sólo se puede obtener del grafito sino por procesos químicos, es objeto de estudio principalmente en EEUU, Inglaterra y China.
Investigadores españoles pertenecientes al Centro de Investigación en Nanociencia y Nanotecnología (CIN2), acaban de patentar y publicar en la revista Analytical Chemistry la descripción de un biosensor capaz de identificar y cuantificar células cancerigenas desde una muestra biológica. Este biosensor se basa en el hecho de que las células cancerigenas sintetizan algunas proteínas (de membrana) que son propias de ellas y que no se encuentran presente en las células normales, este biosensor identifica estas proteínas a través de anticuerpos que se unen en forma específica a estas proteínas, ahora estos anticuerpos se encuentran modificados con Nanopartículas de Oro para aprovechar sus propiedades electroquímicas y así generar una señal que pueda ser detectable.
Las ventajas de este biosensor son múltiples, ya que permite la detección precoz del cáncer, y con esto la posibilidad de realizar un tratamiento exitoso, por otro lado se trata de un apárato sencillo, portable y fácil de utilizar muy similar a un glucómetro y que no necesita de personal especializado para realizarlo.
Terapia génica contra el cáncer usando herramientas Nanotecnologicas
Científicos Británicos han desarrollado nanopartículas que permiten transportar genes anti cáncer hasta células tumorales en forma selectiva, sin alterar las células sanas, integrando los genes en forma exitosa, pudiendo así las células cancerosas expresar las proteínas correspondientes que ayudarían a destruir las células tumorales y de esta manera frenar el cáncer. Este experimento se realizó en ratones y se espera dentro de poco comenzar los ensayos en humanos. Esta nueva tecnología tiene una gran relevancia, ya que permitiría tratar aquellos cánceres, que por afectar organos vitales no son operables, abriendo así una nueva esperanza para una cura definitiva de este mal.
Anticuerpos artificiales basados en Nanotecnología
Los Anticuerpos son Proteínas que tienen como función el detectar y neutralizar agentes extraños al organismo, como por ejemplo Bacterias, virus, y otros microorganismos, Esta función la logran uniendose a determinadas zonas del agente extraño por lo general una proteína, la que recibe el nombre de Antígeno, esta unión se da por una complementariedad espacial de una determindada zona del anticuerpo llamada región variable con el antígeno.
Un equipo de Investigadores de Estados Unidos y Japón, han logrado sintetizar una nanopartícula hecha de un polímero sintético, que posee la especificidad y selectividad de un Anticuerpo natural, incluso funciona dentro del torrente sanguíneo en un animal vivo, este avance podría tener aplicaciones en terapias con anticuerpos, antídotos para toxinas, purificación de proteínas, etc.. además es muy interesante el hecho de que una estructura hecha en forma artificial no proteica pueda remplazar en función a una estructura biológica proteica, este es un ejemplo más de como la Nanotecnología esta entrando fuerte en al campo de la Biotecnología y Medicina.
Cesar Hernandez
19502806
Referencias
http://www.nanotecnologia.cl/anticuerpos-artificiales-basados-en-nanotecnologia/
http://www.nanotecnologia.cl/terapia-genica-contra-el-cancer-usando-herramientas-nanotecnologicas/
1. Breve descripción
La idea de encapsular circuitos electrónicos en un sólo dispositivo surge a principios de la década de 1950 como resultado de la aplicación del transistor (1948). El concepto se transforma en producto destinado al público en general recién en los años setenta, cuando los progresos en la tecnología de semiconductores permiten el desarrollo del circuito integrado. Rápidamente la industria adopta esta nueva tecnología, y a su vez esta hace posible la evolución y creación de otras: comunicaciones, satélites, computación móvil, telefonía, seguridad, digitalización de la información en diversas áreas como audio y video por citar las más difundidas. Menores costos, mayores prestaciones, mayor robustez y confiabilidad, reducción de tamaño y consumo son sólo algunos de los beneficios directos de la aplicación de la microelectrónica en la industria de consumo. Todos ellos, si bien importantes, no pueden compararse con el extraordinario aumento en las prestaciones y en complejidad de los diseños electrónicos con un costo marginal prácticamente nulo. Esta es una de las razones fundamentales que hacen que la microelectrónica se constituya en uno de los mayores factores impulsores de los procesos de innovación.
Tabla A: ITRS; Nodos tecnológicos para el tamaño físico de compuerta en el corto plazo.
Año de Producción 2005 2006 2007 2007 2008 2009 2010 2011 2012
Tamaño físico de compuerta (nm) 32 28 25 23 20 18 16 14 13
El desarrollo de productos de microelectrónica involucra generalmente varias etapas en las que el nivel de valor agregado disminuye a lo largo del proceso total (R&D vs. manufactura).
Los grandes eslabones del proceso son:
• Diseño de circuitos. Producto de alto valor agregado resultante de la aplicación de conocimientos y experiencia del diseñador.
• Herramientas de Software de diseño (CAD), verificación y simulación.
• Fabricación de prototipos y ensayo.
• Fabricación de chips con prueba en línea.
• Encapsulado y prueba final de integrados.
• Integración de chips, electrónica y software en sistemas (e.g., teléfonos celulares, PDA).
2. Focos tecnológicos corto/mediano plazo (<>
Desarrollo de la industria de valor agregado basada en post-procesamiento de circuitos integrados (donde el microchip se diseña localmente, se encarga a fábricas fuera del país, y se aplican pasos de procesamiento posterior en el país) para su integración híbrida con: (1) estructuras MEMS; (2) nanotubos y nanopartículas; (3) microfluídica; (4) accionadores de RF y de potencia; para aplicaciones en: (1) biomedicina; (2) monitoreo ambiental; (3) agricultura y ganaderia; (4) energía.
4. Mercado Local
El estudio fue realizado por Mercados Horizontales ó Areas Tecnológicas, comprendiendo: Telecomunicaciones, Informática, Control Automático, Instrumental y otros equipos, Electrónica de entretenimiento y Consumo, Componentes y Materiales e Ingeniería de Integración. Se constató la existencia de 797 empresas del sector electrónico, que ocupan en promedio 25 empleados por empresa - representando 20.000 personas empleadas en el conjunto - con una facturación promedio del orden de $ 1,5 millones por empresa, y una facturación total anual del orden de los 400 millones de dólares (20.000dólares por empleado/año, ó sea 1.666 dólares por empleado/mes).
Cabe destacar que, el 78,6% de las empresas utiliza diseños propios y el 81,8 % manifiesta desear proteger su diseño con un integrado propio, mientras que el 80,7% expresó que integrar parte ó la totalidad de sus circuitos electrónicos le resultaría una ventaja competitiva importante. En particular, el siguiente grupo de empresas inició gestiones para la definición de proyectos concretos:
- TRONIK, fabricante de fuentes y convertidores de energía eléctrica
- ECAMEC, fabricante de instrumentos de medición de energía eléctrica
- SYSTELAB / AMR, fabricante de equipos para telemedición y gestión de energía eléctrica
- RMI, fabricante de radioenlaces de microondas y repetidores e inhibidores para telefonía móvil.
- EXEMYS, fabricante de interfaces industriales
- HIBRICOM, fabricante de circuitos híbridos
- MEGATECH, fabricante OEM de centrales de conmutación telefónica IP
- INVAP, desarrollo de radares, satélites, reactores nucleares
- PENTACOM, Gestión de distribución de la energía
5. Mercado Global
Dentro del sector científico, se están desarrollando con éxito líneas de investigación en circuitos integrados analógicos y digitales, circuitos de telemetría para marcas inteligentes (RFID), sensores, circuitos de bajo consumo e imagers, MEMS para sensado de variables ambientales y biológicas e instrumentación. Esto se está llevando a cabo en laboratorios de UNS, UCC, INTI, UNR.
Sector técnico
Desafortunadamente, el sector técnico debe reconstruirse a nivel nacional y no existe disponibilidad en la actualidad de técnicos capacitados en la temática.
Sector empresario
El sector empresario en el area de diseño es casi inexistente. Solo hay dos empresas, Allegro Microsistemas (Buenos Aires), y Clariphy Argentina (Córdoba), dedicadas al diseño de circuitos integrados analógicos, y de comunicaciones, respectivamente. Cada una de estas empresas tiene en la actualidad unos 20 empleados promedio, y emplea al grueso de los graduados con conocimientos en Microelectrónica producidos en las universidades. Una tercer empresa, EMTECH, de menor tamaño (4 a 5) empleados, provee soluciones integradas basadas en FPGA o en integración rápida de chips mediante diseño de las capas superiores de metal y celdas estándar, servicio provisto por la empresa ChipX.
Sector gubernamental
Dentro del sector gubernamental, se cuenta con laboratorios de alta complejidad como los que poseen INTI, CNEA y CONAE. En particular, INTI tiene las capacidades para desarrollar microsensores para la medición de variables bioambientales, encapsur, soldar y testear circuitos integrados. Cuenta además con una sala limpia para post-procesamiento de circuitos integrados.
CNEA-CAC está terminando su sala de fabricación de MEMS, y desarrolla biosensores y detectores basados en nanocomponentes. También dispone de equipamiento para irradiación de muestras de relevancia para simular las condiciones de radiación a las que se ven sometidos los circuitos en el espacio y en equipamiento médico de alta complejidad. CNEA-CAB tiene laboratorios para la manipulación de MEMS, nanoestructuras, nanopartículas, tubos, hilos y cintas, y para el estudio de sus propiedades magnéticas.
7. Actores clave
Clariphy Argentina S. A. y Allegro Microsistemas son dos compañías de diseño de circuitos integrados, en las areas de Convertidores de datos de alta velocidad y Diseño analógico para electrónica de consumo, respectivamente. Estas dos empresas están en pleno proceso de crecimiento, y empleando de 2 a 3 personas por año, cada una. En la actualidad, este crecimiento se haya limitado por la disponibilidad de RRHH más que por ningún otro factor.
1. Johns Hopkins University EEUU
2. University of California at San Diego, EEUU
3. Centro Microelectrónica de Sevilla, España
4. ETH, Suiza
5. Universidad de Sao Paulo, Brasil
6. Universidad Federal de Rio Grande do Sul, Brasil
7. INAOE, Mexico
8. Chonbuk, National University, Corea del Sur
9. National Chiao Tung University, Taiwan
10. Universidad de la República, Uruguay.
Resulta de particular importancia, la relación que se mantiene con centros nacionales de micro y nano electrónica. Dentro de ellos, se pueden destacar:
A. Centro Nacional de Microelectrónica de Sevilla. Contacto: Dr. José Luis Huertas; Director.
B. National System on Chip Program Office of Taiwan: Contacto: Dr. Chung-Yu Wu; Director.
C. CEITEC (Brasil). Contacto: Dr. Sergio Bampi; Gerente Técnico.
D. LETI (Grenoble). Contacto: Dr. Jean Bletry; Relaciones Institucionales.
9. Objetivos en el corto/mediano plazo (desarrollo de líneas y equipos de R&D, desarrollo empresario y comercial, desarrollo de recursos humanos)
10. Objetivos en el largo plazo (desarrollo de líneas y equipos de R&D, desarrollo empresario y comercial, desarrollo de recursos humanos)
El objetivo principal de largo plazo es el desarrollo de un medio privado de alto perfil tecnológico, que genere trabajo con un impacto apreciable en la economía del país. Uno de los objetivos principales es la generación de pequeñas y medianas empresas que produzcan productos (núcleos de propiedad intelectual, sistemas en chip, sensores inteligentes, sistemas electrónicos complejos) para el mercado externo e interno. Otro, es la instalación de empresas tecnológicas ya consolidadas en terreno nacional.
11. Factibilidad de alcanzar los objetivos, considerando escenarios optimista, pesimista y muy optimista.
En un escenario optimista, el estado provee un apoyo mediano, brindando un número satisfactorio de becas de magíster y doctorado, con algunas de ellas destinadas a especialización en el exterior. Se atraen un par de empresas de diseño. En este escenario, se logra una masa crítica de tecnólogos/investigadores en las universidades. Se produce también un número adecuado de maestrías. Las empresas toman un buen número de los especialistas formados, lo cual mantiene un ritmo de crecimiento sostenido tanto al nivel de formación de RRHH como de empleo. La falta de formación en el exterior, hace que no se dé inicialmente una cantidad nutrida de emprendimientos para la exportación de tecnología. Surgen emprendimientos locales en conjunción con empresas nacionales de electrónica, las cuales dinamizan la producción de tecnología y empleo. Argentina dinamiza y actualiza su industria nacional de tecnología. Consigue las bases suficientes para encarar una fase siguiente y transformarse en exportador de tecnología.
En un escenario pesimista, no hay un apoyo decisivo, se consigue un número reducido de becas, solamente doctorales. Las becas de maestrías son provistas en números bajos por las empresas existentes en el medio. No se logra atraer ninguna empresa. En este escenario, la formación de RRHH se torna lo suficientemente lenta como para no producir el efecto multiplicativo. Se producen algunas maestrías, las cuales obtienen trabajos fácilmente en las empresas financiadoras, no obstantes, éstas no alcanzan a satisfacer sus necesidades de incorporación de personal. El crecimiento en la academia es lento, y no alcanza a potenciar el sector privado. No hay masa crítica para proveer la demanda de las industrias nacionales de electrónica, ni se genera en ellas un interés notable. No se exporta tecnología.
12. Porque Argentina debería invertir recursos en esta área? (seria interesante un análisis tipo FODA)
Oportunidades: Ámbito industrial floreciente, etapa histórica en Sudamérica, RRHH en formación, centros académicos y de capacitación robustos, laboratorios tecnológicos estatales de alta complejidad, posible acompañamiento de microelectrónica con el crecimiento de IT en el país.
Amenazas: falla en la asociatividad entre el sector de diseño y los sectores de producción de tecnología y software; ausencia de acompañamiento del estado con políticas de apoyo; falta de interés de ingenieros y fondos insuficientes para la producción de una masa crítica de RRHH
13. Medidas concretas para alcanzar los objetivos, realizables entre 2008 y 2011.
Financiar un programa de formación de Maestrías y Doctores, con la flexibilidad adecuada para la concreción de los objetivos deseados, contemplando la formación en el exterior.
Completar la formación del Instituto de Diseño con una estructura geográfica distribuida. Garantizar el financiamiento para la obtención de licencias comerciales y servicios de fabricación.
Crear un programa especial que financie los puestos de los especialistas generados en empresas tecnológicas existentes y en nuevos emprendimientos.
Fomentar la instalación de 3 empresas extranjeras con fuertes lazos a los proyectos de generación de recursos humanos y establecimiento de desarrollo tecnológico en Argentina.
Personas involucradas en la confección de este documento
Pedro Julián, UNS
Pablo Mandolesi, UNS
Alejandro Oliva, UNS
Javier Orozco, UNS
Osvaldo Agamennoni, UNS
Luis Toledo, UCC
Pablo Petrashin, UCC
Walter Lancioni, UCC
Manuel Greco, XOLSA
Alberto Anesini, INTI
Daniel Lupi, INTI
Maximiliano Fischer, CNEA
Gerardo Monreal, Allegro Microsistemas SA
El Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) inauguró el 19 de abril el Laboratorio de Innovación en Sistemas (LI-MEMS).
CIUDAD DE MÉXICO.- La participación de México en el mercado electrónico suele reducirse al ensamblado de productos electrodomésticos, computadoras personales o televisores. A pesar de que esta actividad beneficia la creación de fuentes de empleo, también establece una dependencia de las grandes trasnacionales dominantes del ramo; así como un atraso en el desarrollo de tecnologías propias.
Esta dependencia prevalece cuando en el país están dadas las condiciones para apoyar el desarrollo de tecnología propia que satisfaga a la industria en la demanda de nuevos materiales con los que se producen piezas cuyos tamaños son de mil millonésimas partes de un metro, correspondientes al maravilloso mundo de la nanoelectrónica.
Con el propósito de que la investigación científica nacional satisfaga las necesidades de las industrias, el Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) inauguró el 19 de abril el Laboratorio de Innovación en Sistemas MicroElectroMecánicos (LI-MEMS), dentro de sus instalaciones en Santa María Tonanzintla, Puebla.
Si bien desde 1974 esta institución cuenta con un laboratorio de microelectrónica en el que se diseñan y producen prototipos de circuitos integrados para diversas universidades nacionales, el nuevo laboratorio permitirá a la Coordinación de Electrónica del INAOE incorporar materiales nano-estructurados (con dimensiones de 5 a 100 mil millonésimas partes de metro) compatibles con las características semiconductoras del silicio.
Cabe señalar que algunos de los proyectos de investigación del laboratorio de microelectrónica han migrado al LI-MEMS, además de que ya colaboran con el Hospital de la Ceguera Luis Sánchez Bulnes en el diseño de sistemas microelectromecánicos para erradicar problemas de glaucoma.
El Li-Mems INAOE cuenta con dos plantas de 800 metros cuadrados cada una. La parte superior del edificio está dedicada a la caracterización de dispositivos, circuitos integrados, y sistemas microelectromecánicos (conocidos como MEMS). Además cuenta con el equipo para probar los prototipos en diferentes temperaturas, frecuencias y condiciones de operación.
En la planta baja está el sistema de bahías para elaboración de mascarillas, litografías, limpieza de obleas (secciones circulares de lingotes de cristales semiconductores y constituyen el material inicial sobre el que se fabrican los circuitos integrados), implantación de iones, tratamientos térmicos, metalización, depósito y grabado de materiales, así como el área para diagnóstico intra proceso.
De acuerdo con el doctor Alfonso Torres, investigador de la Coordinación de Electrónica, en el laboratorio se podrán diseñar, desarrollar y producir prototipos de dispositivos, circuitos integrados, sensores y sistemas microelectromecánicos a partir de una tecnología producida en el INAOE conocida como POLIMEMS.
Esta técnica, explicó, es la integración de sensores mecánicos, actuadores y electrónica en un sustrato común (silicio) mediante la tecnología de microfabricación BICMOS (bipolar CMOS), la cual permite el uso de materiales nano-estrucurados.
La creación del LI-MEMS INAOE es el resultado de una iniciativa que presentó en 2004 la Fundación México-Estados Unidos para la Ciencia (FUMEC) con el propósito de establecer una red de instituciones de investigación y desarrollo que permita el diseño y producción de prototipos MEMS de aplicación en los sectores salud, comunicaciones y automotriz.
Esta red comprende tres laboratorios ubicados en el centro y norte del país: uno de Diseño en la Universidad Nacional Autónoma de México (UNAM), otro de Encapsulado y Prueba en la Universidad Autónoma de Ciudad Juárez y el de Desarrollo y Fabricación de prototipos del INAOE.
La nanotecnologia al aplicarse a la medicina se le conoce como nanomedicina. Con la descripción de los nanorobots, se puede intuir que la utilidad de éstos en las ramas medicas será muy importante. Para empezar los nanorobot medirán de alrededor de 0.5-3 micras, por lo cual podrán flotar libremente por los vasos sanguíneos. Las principales aplicaciones de estos será la interacción de los nanorobots con las células sanguíneas (eritrocitos y leucocitos) en la reparación de los tejidos, la cura del cáncer o SIDA y la posible terapia de enfermedades genéticas.
Sin lugar a dudas la nanotecnologia cambiara en gran medida a la medicina, ya que aunque la medicina de hoy comprende que la mayoría de las enfermedades se deben a cambios estructurares en las moléculas de las células, dista mucho ahora de corregirlas. Esto es el caso con el cáncer ya que se sabe que se debe a una reproducción anormal de un tejido, pero la solución sigue siendo extirpar el tejido afectado, seguimos dando soluciones macroscópicas, sin resolver las microscópicas y este tipo de problemas es de lo que sé encargar de resolver la nanomedicina.
Por lo tanto, la nanotecnología puede significar el final de las enfermedades como la conocemos ahora. Si pesca un resfrío o se contagia de SIDA, sólo tendrá que tomar una cucharada de un líquido que contenga un ejercito de nanobots de tamaño molecular programados para entrar a las células de su cuerpo o combatir los virus. Si sufre una enfermedad genética que azota a su famila, al ingerir algunos nanobots que se introducirán en su ADN, repararán el gen defectuoso. Inclusive la cirugía plástica tradicional será eliminada, ya que nanobots médicos podrán cambiar el color de sus ojos, alterar la forma de su nariz, y más aún, podrán hacerle un cambio total de sexo sin el uso de cirugía.
Nanorobots inmunológicos.
El sistema inmune de nuestro cuerpo es el encargado de proporcionar defensas contra agentes extraños o nocivos para nuestro cuerpo, pero como todos los sistemas éste siempre no puede con todo. Entre estas deficiencias se encuentra que muchas veces no responde( como es el caso con el SIDA) otras veces sobreresponde (en el caso de enfermedades autoinmunitarias). Cabe decir que los nanorobots estarán diseñados para no provocar una respuesta inmune, quizás las medidas que tienen estos bastaran para no ser detectados por el sistema inmune. La solución que ofrece la nanomedicina es proporcionar dosis de nanorobots para una enfermedad especifica y la subsecuente reparación de los tejidos dañados, substituyendo en medida a las propias defensas naturales del organismo.
Substituyendo al eritrocito.
Una de las aplicaciones inmediatas que se planea alcanzar con la nanomedicina es la de hacer un diseño que mejore la funcionalidad de la hemoglobina, la proteína encargada de la transportación de oxígeno y dióxido de carbono en los tejidos, la cual se encuentra en el eritrocito. Hoy en día hay avances en este campo, siendo los principales investigadores Chang y Yu los cuales están desarrollando un nuevo sistema basado en la encapsulación de hemoglobina a través de nanocapsulas.
En la figura se muestra un diseño de un nanoinvento el cual se encuentra en pulmón, se observa un rotor el cual va a acarrear él oxigeno por diferencia de las presiones parciales del oxigeno ya que por fuera hay mayor cantidad que adentro por lo tanto el nanoinvento va a meter él oxigeno en un pequeño tanque. Todos estos procedimientos van a ser controlados por él medico, se supone que mediante mecanismos de ondas de baja frecuencia que el nanoinvento los interpreta como comandos a seguir. Este procedimiento será el mismo a nivel periférico. La utilidad de esto es que estos aparatos proporcionaran alrededor de un almacén de 530 litros de oxigeno aumentando 2000 veces el almacenamiento de oxigeno comparado con la hemoglobina.
La biostasis: una aplicación para el futuro.
Él termino de biostasis se aplica a la capacidad de tener un tejido que se mantenga en condiciones estables durante un lapso de tiempo indefinido. También es sinónimo de criogenia ya que para este tipo de método se propone utilizar alguna sustancia que vitrifique o congele los tejidos a fin de protegerlos. Este método es una esperanza para las personas que tienen alguna enfermedad que no puede ser curada en su tiempo. Aunque esta técnica por ahora no se le puede relacionar con la nanotecnologia, en un futuro sí ya, que la idea es reparar los tejidos de la persona en un futuro, y los nanorobots van a ser los encargados de este trabajo.
Aunque aun los médicos no se ponen de acuerdo si la resucitación del paciente puede ser viable, los investigadores de este tema sostienen que en un futuro se tendrán las técnicas para lograr hacer esto.
Modificando el DNA.
Otra de las expectativas que se pueden lograr con la nanomedicina será sin duda la modificación de material genético humano y por consiguiente la cura de las enfermedades genéticas asociadas. Aunque la ingeniería genética es la que se encarga de la investigación en especial de esta molécula, la nanotecnología va a ser la encargada de proporcionar las herramientas necesarias para la manipulación de tan preciada molécula.
La Nanotecnologia en la creación del Hombre Biónico
Una de las cuestiones a superar para poder pensar en un ejemplar biónico tiene que ver con el tamaño de los componentes de ese sistema maravilloso que es el cuerpo humano. Una increíble multiplicidad de funciones tienen lugar en partes del sistema imposibles de reproducir... hasta ahora.
Cuando el cuerpo realiza un movimiento, digamos por ejemplo tomar una copa de cristal, está cumpliendo muchas y muy complicadas funciones al mismo tiempo, de las cuales en su mayoría ni siquiera tenemos conciencia. Mover los músculos de cinco dedos al mismo tiempo, a la vez que sensamos la presión necesaria para sostener la copa sin dejarla caer pero sin romperla. Pero eso no es todo: mientras tomamos la copa, seguimos usando otros sistemas como el auditivo y el visual, mantenemos el equilibrio corporal, respiramos, medimos el nivel de glucosa, procesamos alimentos, etc., etc. ¿Cómo instalar componentes que cumplan esas funciones en espacios tan pequeños, y guardando las formas anatómicas?
El primer paso fue la reducción de los procesadores hasta convertirlos en micro-procesadores, pero eso no es suficiente. La Nanotecnología entra entonces en escena. Esta disciplina tiende a reducir los componentes a un tamaño increíblemente pequeño. El objetivo es reunir un grupo de funciones -que podríamos llamar lógicas- en reacciones dentro de un compuesto ideado para provocar los efectos deseados, en este caso, ciertas tareas. Este nano-componente realiza sus funciones de manera independiente, es decir, tiene un alto grado de autonomía. El reducido tamaño de estos elementos hace necesaria la intervención de robots que aportan su altísima precisión para su construcción.
¿Podrá la Nanotecnología cooperar con la Biónica en el alumbramiento del hombre biónico? Predecir los plazos en que eso se logre es sumamente difícil. Pero la ciencia y la tecnología han creado un tiempo potencial que se acelera exponencialmente. Al incorporar nuevos recursos, éstos dan el marco para nuevos desafíos en un continuum con ritmo propio, capaz de hacernos recuperar nuestra adormecida capacidad de asombro.
Las aplicaciones más inmediatas de la Nanotecnología se dirigen al sector de la exploración espacial. Entre éstas, podemos hablar de bases de lanzamiento de gran altitud, estaciones espaciales, vehículos ligeros y muy resitentes, naves personales para viajar por el espacio o los conocidos nanosatélites, como el NANOSAT, un proyecto de desarrollo de un nanosatélite español, iniciado en 1995.
El NANOSAT parte de un concepto ideado en el INTA y cuya gestión y construcción se realiza totalmente en España, partiendo de una nueva filosofía de diseño: más pequeño, más potente, más rápido, con una aplicación específica concreta, con mayores prestaciones y menor consumo. El éxito en este proyecto de vanguardia puede suponer una importante presencia española en la futura "pequeña revolución en el espacio".
Nanorobots
Aunque todavía no se han fabricado nanorobots, existen múltiples diseños de éstos, incluso no pueden ser del todo robots es decir pueden hasta ser modificaciones de células normales llamadas también células artificiales. Las características que éstos deben de cumplir, entre las que se pueden mencionar:
Tamaño.- Como el nombre lo indica, los nanorobots deben de tener un tamaño sumamente pequeño, alrededor de 0.3 micras ( 1micra=1x10-6).
Componentes.- El tamaño de los engranes o los componentes que podría tener el nanorobot seria de 1-100 nanómetros (1nm=1x10-9) y los materiales variaría de diamante como cubierta protectora, hasta elementos como nitrógeno, hidrógeno, oxigeno, fluoruro, silicón utilizados quizás para los engranes.
Velocidad de procesamiento.- El procesador central del nanorobot solo poseerá una velocidad de 106-109 operaciones por segundo, por lo tanto una mayor inteligencia de procesamiento no será requerida.
El ensamblador.- Se le ha dado el término de “ensamblador” a aquella pieza del nanorobot que es semejante a un brazo submicroscopico, cuyas características principales son las de construir a discreción la materia, reaccionar con compuestos, construir secuencias de moléculas y quizás la de copiarse a sí mismo, teniendo con esto la capacidad de autoreplicarse. Se le puede comparar con los ribosomas, las organelas encargadas de la trascripción y traducción de proteínas. Según los recientes diseños el brazo del ensamblador seria de diamante, de 100 nm de largo por 30 nm de diámetro. Todo esto suena muy complejo, pero cuando se llegue a la tecnología para fabricarlo será relativamente económico.
Los ingenieros en Cornell y en Stanford, así como en Zyvex (la autodenominda "la primera empresa de desarrollo molecular de nanotecnología") están trabajando para crear ese ensamblador ahora. Pero los obstáculos abundan. A diferencia de la construcción de materiales tradicionales que se quedan donde se les deja, los átomos y las moléculas son volátiles y se reacomodarán constantemente por si mismos para mantener su estabilidad.Los estimados varian, De 5 a 10 años, según Zyvex; o de 8 a 15 años, de acuerdo a la comunidad científica.
La clave para la manufactura con estos ensambladores a gran escala es la auto-reproducción. Un robot de tamaño nano haciendo trabajos en madera en tamaño nano puede ser dolorosamente lento. Pero si estos ensambladores de pueden reproducir así mismos, podemos tener trillones de ensambladores trabajando al unísono. Entonces no tendríamos límites para el tipo de cosas que quisieramos crear. "No solo el proceso de fabricación se transformará, sinó todo el concepto del trabajo. Los productos de consumo serán prácticamente ilimitados, de poco valor, inteligentes y duraderos" de acuerdoa un artículo escrito por Chris Peterson y Gail Pergamit del Foresight Institute.
Donde la nanotecnología va tener más influencia es en el campo de la computación y comunicaciones debido en parte a que estos han sido los motores de su desarrollo.
Las cosas han cambiado mucho desde las primeras computadoras electrónicas. El ENIAC I fue desarrollado en la Universidad de Pennsylvania en 1945. Estaba compuesto por más de 70.000 resistencias, 18.000 válvulas y 10.000 condensadores; pesaba 30.000 Kilos y ocupaba 1.300 metros cuadrados.
Pero el descubrimiento del chip, a mediados de los años setenta, ha reducido, por suerte para todos, el tamaño de los ordenadores. El primer 486 utilizaba tecnología de una micra (millonésima parte de un metro). Hasta hace poco tiempo, los Pentium tradicionales utilizaban tecnología de 0.35 y 0.25 micras. Los modelos más modernos han reducido esta valor hasta 0.13 micras. El nanómetro marcará el límite de reducción a que podemos llegar cuando hablamos de objetos materiales, en este caso dispositivos computacionales.
La velocidad de los ordenadores y su capacidad de almacenamiento han sido las principales barreras en el desarrollo de la inteligencia artificial. Con la nanotecnología aparece la posibilidad de compactar la información hasta límites inimaginables y crear chips con memorias de un terabit por centímetro cuadrado. Un Terabit es la capacidad de la memoria humana, lo que quiere decir que los ordenadores del futuro podrán llegar a tener inteligencia propia, es decir, serán capaces de aprender, tomar decisiones y resolver problemas y situaciones "imprevistas", ya que con esta memoria se les podrá dotar de códigos extremadamente complejos. Según los expertos, esto se puede conseguir en un plazo de no más de cinco años. Lógicamente, con ordenadores tan pequeños, los dispositivos de uso también cambiarán. Al tiempo que evoluciona la tecnología de reconocimiento de voz y de escritura, se irán desarrollando otro tipo de "ordenadores personales" en miniatura, casi invisibles, insertados en objetos de uso común como un anillo, por ejemplo, o implantados en nuestro propio organismo en forma de lentillas o chips subcutáneos.
También es necesario fabricar otros conductores, porque los existentes no sirven. Los experimentos con nanotubos de carbón (milmillonésima parte de un metro) para la conducción de información entre las moléculas ya han dado resultados. IBM anunció que ha conseguido crear un circuito lógico de ordenador con una sóla molécula de carbono, una estructura con forma de cilindro 100.000 veces más fino que un cabello. Este proyecto permite introducir 10.000 transistores en el espacio que ocupa uno de silicio.
La posibilidad de desarrollar miniordenadores de cien a mil veces más potentes que los actuales podría suponer que éstos tuvieran inteligencia propia, lo que cambiaría los sistemas de comunicaciones. Por ejemplo, los datos podrían transmitirse con imágenes visuales mediante "displays" incorporados en forma de lentillas. La comunicación telefónica se realizaría por audioconferencias en 8 o 10 idiomas.
En un futuro no muy lejano, los PCs estarán compuestas, en lugar de transistores, por otros componentes como las moléculas, neuronas, bacterias u otros métodos de transmisión de información. Entre estos proyectos se encuentra el futuro ordenador "químico", desarrollado por científicos de Hewlett-Packard y de la Universidad de California (Los Ángeles). Los circuitos de este nuevo modelo son moléculas, lo que supone transistores con un tamaño millones de veces más pequeños que los actuales.
Esto es uno de los aspectos más interesantes ya que no sólo se podrá desarrollar máquinas mucho más pequeñas que una bacteria o una célula humana. Además, se puede empezar a tomar elementos del mundo biológico –por ejemplo, trocitos de ADN para procesadores de ordenadores–. Así, científicos del grupo de investigación Montemagno de la Universidad de Cornell han logrado unir ya elementos biológicos y mecánicos creando pequeños motores del tamaño de un virus. Aunque aún faltan muchas cosas por afinar, estos motores podrían trabajar en el interior de una célula humana. Así también en el mes de noviembre del 2001 científicos israelitas, presentaron una computadora con el ADN tan diminuta que un millón de ellas podría caber en un tubo de ensayo y realizar 1.000 millones de operaciones por segundo con un 99,8 por ciento de precisión. Es la primera máquina de computación programable de forma autónoma en la cual la entrada de datos, el software y las piezas están formados por biomoléculas. Los programas de la microscópica computadora están formados por moléculas de ADN que almacenan y procesan la información codificada en organismos vivos.
El proyecto de chip molecular sustituirá al silicio y a la óptica. Se prevé que se podrán fabricar computadoras del tamaño de una mota de polvo y miles de veces más potentes que los existentes. De momento, se ha conseguido simular el cambio de una molécula, mediante su rotura, pero falta crear moléculas que se curven sin romperse.
Dispositivos nanoinformáticos
Usando nanotubos semiconductores, investigadores de varias empresas y laboratorios han desarrollado circuitos de computación de funcionamiento lógico y transistores, las puertas electrónicas lógicas de que están compuestos los chips.
En agosto del año pasado, en lo que es considerado un paso fundamental hacia la computadora molecular, IBM mostró el primer circuito de ordenamiento lógico formado por nanotubos de carbono. Las computadoras moleculares basadas en estos circuitos tienen el potencial de ser mucho más pequeñas y rápidas que la actuales, además de consumir una cantidad considerablemente menor de energia.
En cuanto a los transistores, los Laboratorios Bell de Lucent Technologies mostraron en octubre del 2001 un transistor de escala molecular con la misma capacidad que el clásico transistor de silicio. Intel no ha mostrado ninguna investigación relacionada a los nanotubos, pero trabajando con silicio a escala nanométrica, la compañía hizo, también el año pasado, otro anuncio igualmente espectacular el transistor de silicio más rápido jamás producido, de apenas veinte nanómetros.
El transistor se enciende y se apaga -recordemos el 1 y el 0 del sistema binario, que forma la base de la informática- más de mil millones de veces por segundo, un 25% más veloz que los transistores más recientes. Para el 2007, Intel espera estar fabricando chips conteniendo mil millones de estos transistores, lo que le permitiría llegar a una velocidad de 20 Ghz. con la energía de un voltio.
En cuanto a memorias, IBM anunció hace apenas cinco meses que su proyecto de nombre código Millipede, que pretende crear capacidades mayores a las existentes, se basa en procesos de escala nanométrica. Este dispositivo de almacenamiento regrabable, de alta capacidad y densidad, trabaja en base a mil pequeñas agujas similares a las del microscopio AFM, con puntas capaces de tocar átomos individuales y escribir, leer y borrar así grandes cantidades de información en un espacio mínimo. De apenas nueve milímetros cuadrados, los investigadores de IBM estiman que en los próximos años, la tecnología Millipede puede superar la capacidad de la tecnología de memoria Flash en cinco veces o más.
Este tipo de desarrollos -tanto los nanotransistores, como las nanomemorias- pueden ser cruciales para absorber las crecientes e inmensas capacidades de procesamiento y memoria que demandan los desarrollos multimedia, más aún cuando se avizora que de acá a máximo diez años la tecnología actual de semiconductores habrá agotado sus posibilidades de crecimiento.
En cuanto a alimentación, la corporación japonesa NEC, junto a otros institutos de investigación; ha anunciado el desarrollo de una célula de carburante con una capacidad diez veces mayor que una batería de litio, pero de tamaño diminuto, en lo que constituye otra aplicación de los nanotubos de carbono, esta vez como electrodos. En el futuro próximo, esta batería le podría permitir a dispositivos portátiles, como las notebooks, funcionar varios días seguidos sin conectarse a la corriente.
Los desarrollos en Nanotecnología se están aplicando también a los sistemas de seguridad. La empresa taiwanesa Biowell Technology presentó, un sintetizado que puede utilizarse para probar la autenticidad de pasaportes y otros documentos y tarjetas, con el fin de evitar el pirateo.
Este chip podrá utilizarse también en tarjetas de débito, carnés, matrículas de automóviles, permisos de conducir, discos compactos, DVD, programas informáticos, títulos y valores, bonos, libretas bancarias, antigüedades, pinturas, y otras aplicaciones en las que se necesite comprobar la autenticidad.
domingo, 27 de junio de 2010
Chip de ADN ¿La panacea?
Que la era del silicio está llegando a su fin no lo duda nadie. Las alternativas bullen por todos lados. Los científicos investigan multitud de campos para superar las limitaciones de este mágico elemento que hasta ahora nos ha ayudado mucho para alcanzar una impresionante etapa de nuestra civilización. Pero la humanidad necesita más y más velocidad, más capacidad de proceso de datos, más información. Los chips de silicio tienen fecha de caducidad en cuanto a sus posibilidades, pero nosotros no podemos detener nuestra voracidad de información. Algunos expertos han escogido la vía del grafeno, ese material maravilloso que parece poseer todos los dones de Dios. Otros se centran en diseñar chips basados en ADN, esa otra molécula divina que ha permitido la vida.
Es el caso de Chris Dwyer, ingeniero de la Universidad de Duke que ha diseñado un chip basado en ADN que puede convertirse en la próxima revolución de la tecnología informática. Este hombre no es cualquiera. Ha recibido el premio PECASE 2009, destinado a los jóvenes talentos de la investigación que merecen una atención especial por la relevancia de sus experimentos y aportaciones a la ciencia. También ha sido premiado por DARPA en 2009 y el premio ARO en 2008. Este profesor adjunto de Ingeniería Eléctrica y Computación de la Pratt School de Duke, asegura que su invento supera con creces las limitaciones que poseen los chips de silicio y que en poco tiempo están llamados a sustituirlos como corazón de los sistemas informáticos del futuro.
Basa el funcionamiento del chip combinando fragmentos específicos de ADN con otras moléculas específicas, para que utilizando las instrucciones codificadas en el ADN este "ensamblador" fabrique trazos de circuitos concretos. Luego, para crear otros patrones diferentes, simplemente se utilizan diferentes "programas" de ADN y, al combinar todos estos programas, es posible crear cualquier patrón imaginable. Lo mejor de todo es que estos chips no necesitan electricidad para comunicarse, sino luz. Gracias a unas estructuras que se forman llamadas cromóforos, la computación por medios ópticos será la encargada de impulsar los millones de datos que circularan por sus circuitos y aumentar la velocidad de procesamiento a un nivel jamás visto por el silicio. Por si fuera poco, estos chips tienen la capacidad de auto-ensamblarse, con lo que sus posibilidades de uso resultan prácticamente ilimitadas.
Pero eso no es todo. Para rematar la faena, resulta que estos chips son infinitamente más baratos que los de silicio y, sobre todo, son tan sencillos de fabricar que una persona es capaz de fabricar en un solo día más chips que toda la industria de semiconductores del mundo durante un mes entero, lo que significa que el costo de fabricar estos procesadores súper avanzados se aproximará casi a cero. Realmente increíble. Cuando esto llegue al mercado, no podemos ni imaginar que avances nos traerá semejante poderío informático. En pocos años, dispondremos de unos chips velocísimos a un coste muy reducido y a tamaño infinitesimal. Toda una promesa de futuro que nos acercará a la singularidad de Kurzweil antes de lo que pensamos.
Nuevo nanoláser permitiría CPU de 100 THz
Un equipo de científicos de la Cornell University y la Purdue University ha puesto a punto un dispositivo capaz de generar luz láser que utiliza plasmones en lugar de fotones. Esta partícula, de sólo 44 nanómetros de longitud, ha posibilitado la creación del láser que abre las puertas para la fabricación de microprocesadores capaces de funcionar a 100 THz, unas 20.000 veces más rápido que los actuales. Sin dudas, éste es uno de los avances más importantes de los últimos tiempos.
Siendo estrictos, no se trata de un láser (Light Amplification by Stimulated Emission of Radiation), sino de un pariente cercano llamado spaser (surface plasmon amplification by stimulated emission of radiation) que, en lugar de fotones, utiliza plasmones. Los plasmones son unas partículas que solo tienen 44 nanómetro de longitud y, como se encarga de aclarar Mark Stockman, profesor de física de Georgia State, “el spaser trabaja unas mil veces más rápido que el transistor más rápido existente, con un tamaño similar. Esto abre la posibilidad de construir amplificadores ultrarrápidos, elementos lógicos y microprocesadores que pueden funcionar miles de veces más rápidos que los microprocesadores convencionales basados en silicio.” Este método trata la luz de forma diferente a las tradicionales CPU ópticas, que son “difíciles de reducir de tamaño porque no puedes contener fotones en áreas más pequeñas que la mitad de la longitud de onda asociada”. Esta tecnología es la piedra fundamental en la que se basarán microprocesadores capaces de funcionar a 100 THz.
El tamaño de un láser convencional está dictado por la longitud de onda que utiliza. La distancia entre las superficies reflectivas implicadas no puede (por obvias razones) ser menor que la mitad de la longitud de onda de la luz utilizada, que en el caso del espectro es de alrededor de 200 nanómetros. “Los spasers evitan estas limitaciones mediante el uso de plasmones,” dice Noginov. En el futuro, los spasers tendrán tamaños más pequeños, quizás de solo un nanómetro. “Difícilmente se puedan hacer más pequeños que eso,” explica Noginov, “porque se podría romper la funcionalidad de las nanopartículas en el dispositivo.”
Mientras que los equipos electrónicos actuales de uso masivo más veloces operan a velocidades de alrededor de 10 Gigahertz, Mikhail Noginov, un físico del Center for Materials Research de la Norfolk State University (Virginia), explica que los dispositivos ópticos pueden operar a cientos de Terahertz. Lamentablemente, hasta la fecha los dispositivos ópticos han sido muy dificiles de miniaturizar porque su tamaño depende de la longitud de onda de los fotones utilizados. “Actualmente se está haciendo un gran esfuerzo para diseñar una nueva generación de dispositivos nanoelectrónicos basados en plasmónica”, dice Noginov. A diferencia de otros intentos previos, los spasers son elementos activos capaces de producir y amplificar ondas. Noginov conoce profundamente el tema, ya que es uno de los coautores de este nuevo spaser. Ulrich Wiesner, de la Cornell University y Vladimir Shalaev y Evgenii Narimanov de la Purdue University completan el equipo, cuyo trabajo ha sido publicado en la última edición de la revista Nature.
El reto que Noginov y sus colaboradores deben afrontar es construir un dispositivo que evite que la energía del haz spaser se disipe rápidamente en la superficie del metal. Una de las formas de evitarlo consiste en colocar una capa de sílice incrustada sobre la parte de oro. La “luz” proveniente del spaser permanece confinada como plasmones, o puede -de forma controlada- dejar que salga en forma de fotones en el rango de luz visible. Los “spasers” podrían ser la base de los ordenadores ópticos del futuro, al igual que los transistores son la base de la electrónica de hoy día.